Chapter 11 Processing spatio-temporal data
Last updated: 2020-08-12 00:40:21
Aims
Our aims in this chapter are:
- Learn to work with
list
objects - Present several characteristics of spatio-temporal data
- Demonstrate spatio-temporal data processing:
- Aggregation of raster spatio-temporal data
- Reshaping of vector trajectory data
We will use the following R packages:
stars
dplyr
data.table
sf
units
11.1 Lists
11.1.1 The list
class
A list
is a collection of objects of any class. There are no restrictions as for the class and dimensions of each list element. Lists are therefore the most flexible of the base R data structures.
A list
can be created by passing individual objects to the list
function. For example, the following expression creates a list
object named x
, which contains the three vectors c(1,3)
, c(4,5,6)
and 8
:
Using the class
function we can make sure that x
is indeed a list
:
Printing a list shows the internal objects it contains. In an unnamed list, the elements are marked with indices inside double square brackets ([[
):
List element names can be accessed with names
:
and modified by assignment to names
:
As a result of the above expression, x
is now a named list
. When printing a named list
, elements are marked with $
symbols followed by element names:
11.1.2 List subsetting
The [
operator gives a list
subset, as a new list. Numeric indices or element names (in case the list
is named) can be used. For example, either of the following expression returns a list
with just the first two elements of x
:
Either of the following expressions returns a list
with just the third element of x
:
The [[
or $
operators return the contents of an individual list
element (Figure 11.1). For example, either of the following expressions returns the second element of x
, which is a numeric
vector:
Note that the [[
operator can be used with either numeric
or character
indices (in quotes), while the $
operator only works with character indices (without quotes).
List element names can be removed by assigning NULL
to the names
property:
11.1.3 The lapply
function
One of the most useful functions when working with list
objects is lapply
. The lapply
function is used to “do something” with each list
element, getting back a matching list
of results. The lapply
function:
- “Splits” a
list
to individual elements - Calls a function on each element
- Combines the results back to a new
list
The lapply
function is therefore conceptually similar to apply
(Section 4.5), only operating on list
elements, rather than the rows or the columns of a matrix
or a data.frame
(Figure 11.2).
For example, the following expressions apply the mean
(Figure 11.2), range
and is.na
functions on each element in the list x
. In each case, the returned object from lapply
a new list
with the results:
11.1.4 The split
function
The split
function can be used to split a data.frame
to a list
of data.frame
subsets, according to unique values of the given vector (Figure 11.3).
For the next example, let’s ctreate a small data.frame
named dat
:
dat = data.frame(
y = c(3, 5, 1, 4, 5),
g = c("f", "m", "f", "f", "m"),
stringsAsFactors = FALSE
)
dat
## y g
## 1 3 f
## 2 5 m
## 3 1 f
## 4 4 f
## 5 5 m
and a vector named a
which matches the number of rows in dat
:
Using split
, we can “split” dat
to a list
of subsets, with the corresponding rows to all levels in the vector a
(Figure 11.3):
What type of object will be the result of
split(dat, dat$y)
? How many elements will it have?
11.1.5 The do.call
function
The do.call
function can be used to pass a list
of function arguments to another function. For example, instead of the following hypothetical function call of f
with arguments a
, b
, c
and d
:
we can use the following equivalent expression with do.call
:
The do.call
function is useful when we want to call a function with a large or variable number of arguments—passed as list
elements—without having to specify them by name.
For example, suppose we want to combine all internal vectors in the list x
to a single vector, using the c
function. Instead of specifying each and every element:
we can use do.call
:
Now that we know how to work with list
objects, we move on to defining spatio-temporal data (Section 11.2) and using the list
class for spatio-temporal data processing (Sections 11.3–11.4).
11.2 Spatio-temporal data
It can be argued that all data are spatio-temporal, since they were measured in certain location(s) and time(s), even if the locations and times were not recorded and/or are irrelevant for analysis. However, we usually refer to data as spatio-temporal when the locations and times of observation were recorded and are relevant for analysis. Here are some examples of spatio-temporal data:
- Time-series of satellite images
- Temperature measurements in meteorological stations over time
- Voting results in administrative units during several election campaigns
- Movement tracks of people or animals, with or without associated measurements (heart rate, activity type, etc.)
- Spatial pattern of epidemic disease outbreak
- Volcanic eruption event locations over time
Methods and tools for processing and analyzing spatio-temporal data are generally less developed than methods for working with spatial or temporal data. R has numeroud specialized packages for analyzing spatio-temporal data. The important ones are listed in the Handling and Analyzing Spatio-Temporal Data task view.
Conceptually, we can classify types of spatio-temporal data according to the arrangement of observations in space-time (Figure 11.4). For example, spatio-temporal data may form a regular or irregular “grid”, depending on whether the observations were repeatedly measured at the same locations and times or whether each observations has a unique space-time “stamp”. Trajectories are distinguised by the fact that observations usually refer to an individual object (or few objects) observed in consecutive times.
For example, meteorological data (Figure 11.5) and satellite data (Figure 11.6) form regular grids of points or pixels collectively measured at the same time.
Tweet (Figure 11.7) and disease case (Figure 11.8) locations comprise irregular grids, since each observation is associated with a unique location and timestamp.
Flickr image records per user over time (Figure 11.9) and storm tracks (Figure 11.10) are examples of trajectory data.
11.3 Aggregation of spatio-temporal rasters
11.3.1 Introduction
Processing and visualization of spatio-temporal data are challenging, because of their three-dimensional nature. One of the basic approaches for working with spatio-temporal data is to simplify them using aggregation, in the spatial and/or temporal dimension, to help with visualization and exploratory analysis.
To demonstrate spatio-temporal aggregation, let’s go back to the MOD13A3_2000_2019.tif
raster, which is an example of spatio-temporal data forming a regular grid (Figure 11.4):
library(stars)
r = read_stars("MOD13A3_2000_2019.tif")
dates = read.csv("MOD13A3_2000_2019_dates2.csv", stringsAsFactors = FALSE)
borders = st_read("israel_borders.shp", stringsAsFactors = FALSE)
names(r) = "NDVI"
dates$date = as.Date(dates$date)
r = st_set_dimensions(r, 3, values = dates$date, names = "time")
r = st_warp(r, crs = 32636)
r = r[borders]
11.3.2 Aggregating time periods
To aggregate a raster on the temporal dimension (the raster layer), we need to:
- Split the raster to subsets of raster layers (e.g., images captured in the different seasons)
- Use raster algebra to summarize each subset into a single layer (e.g., mean per pixel)
- Combine the results into a new multi-band raster (e.g., seasonal mean images)
We already learned how to subset raster layers using a numeric
vector of indices (Section 6.2). Combined with which
(Section 2.4.2), we can use this method to subset raster layers using a logical
vector specifying which layers to keep. For example, here how we can get a subset of just the NDVI images taken in January:
r[,,,which(dates$month == 1)]
## stars object with 3 dimensions and 1 attribute
## attribute(s), summary of first 1e+05 cells:
## NDVI
## Min. :-0.18
## 1st Qu.: 0.12
## Median : 0.35
## Mean : 0.33
## 3rd Qu.: 0.50
## Max. : 0.89
## NA's :60579
## dimension(s):
## from to offset delta refsys point
## x 80 246 542754 926.305 +proj=utm +zone=36 +datum... NA
## y 14 478 3704603 -926.305 +proj=utm +zone=36 +datum... NA
## time 1 19 NA NA Date NA
## values
## x NULL [x]
## y NULL [y]
## time [2001-01-01,2001-02-01),...,[2019-01-01,2019-02-01)
How can we create a subset of
MOD13A3_2000_2019.tif
with just the images taken during spring? How can we then calculate the “average” spring NDVI image?
Now, let’s use the same method to create a seasonal summary of average NDVI images, including each of the four seasons. We would like to create a raster named season_means
, having 4 layers, where each layer is the average NDVI, excluding NA
, per season:
"winter"
"spring"
"summer"
"fall"
First, we create a vector of season names:
Then, iterating on the season names with a for
loop, for each season we:
- Subset the layers captured in that season only
- Calculate the mean NDVI per pixel
- Collect the result into a
list
The following code section initializes an empty list
named season_means
, then runs a for
loop that goes over the seasons and calculates seasons means:
season_means = list()
for(i in seasons) {
sel = which(dates$season == i)
s = r[,,,sel]
season_means[[i]] = st_apply(s, 1:2, mean, na.rm = TRUE)
}
When the for
loop ends, we get a list
of seasonal mean rasters, named season_means
.
(Note that passing a vector of indices does not work inside a for
loop, which is why we are creating a vector named sel
as an intermediate step. This is a bug in the current version of stars
which is resolved in the development version.)
Next, we combine the list
elements to a multi-band raster with do.call
and c
. The additional along=3
parameter makes sure the layers are “stacked” to form a third dimension:
This is basically a shortcut to the following alternative code, without using do.call
, in which case we need to specify each and every one of the list items:
season_means = c(
season_means[[1]],
season_means[[2]],
season_means[[3]],
season_means[[4]],
along = 3
)
Either way, we now have a four-band raster named season_mean
with the seasonal means in r
:
season_means
## stars object with 3 dimensions and 1 attribute
## attribute(s):
## mean
## Min. :-0.20
## 1st Qu.: 0.11
## Median : 0.18
## Mean : 0.23
## 3rd Qu.: 0.33
## Max. : 0.82
## NA's :179251
## dimension(s):
## from to offset delta refsys point
## x 80 246 542754 926.305 +proj=utm +zone=36 +datum... NA
## y 14 478 3704603 -926.305 +proj=utm +zone=36 +datum... NA
## new_dim 1 4 NA NA NA NA
## values
## x NULL [x]
## y NULL [y]
## new_dim winter,...,fall
All we have left to do is set the attribute name ("NDVI"
) and dimension values (the season names):
names(season_means) = "NDVI"
season_means = st_set_dimensions(season_means, 3, names = "season", values = seasons)
Here is the modified season_means
raster:
season_means
## stars object with 3 dimensions and 1 attribute
## attribute(s):
## NDVI
## Min. :-0.20
## 1st Qu.: 0.11
## Median : 0.18
## Mean : 0.23
## 3rd Qu.: 0.33
## Max. : 0.82
## NA's :179251
## dimension(s):
## from to offset delta refsys point
## x 80 246 542754 926.305 +proj=utm +zone=36 +datum... NA
## y 14 478 3704603 -926.305 +proj=utm +zone=36 +datum... NA
## season 1 4 NA NA NA NA
## values
## x NULL [x]
## y NULL [y]
## season winter,...,fall
The resulting season means raster is shown in Figure 11.11:
In case we need to summarize the seasonal NDVI in a different way, all we have to do is replace the aggregation function. For example, we can decide to have NA
instead of less reliable pixels where >10% of values are missing. In such case, instead of the previous function mean
, we use a custom function named f_NA
:
The aggregation code are exactly the same as in the last example, except for using f_NA
—instead of mean
—inside st_apply
:
season_means = list()
for(i in seasons) {
sel = which(dates$season == i)
s = r[,,,sel]
season_means[[i]] = st_apply(s, 1:2, f_NA)
}
season_means$along = 3
season_means = do.call(c, season_means)
names(season_means) = "NDVI"
season_means = st_set_dimensions(season_means, 3, names = "season", values = seasons)
The result is similar, only with some pixels replaced with NA
:
The pattern of NA
values can ne visualized by applying is.na
on the result (Figure 11.13):
What is the purpose of the
[borders]
part in the above expression? What happens without it?
11.3.3 Aggregating the "x"
dimension
Our second example demonstrates aggregation in one of the spatial dimensions, rather than in the layers dimension (Section 11.3.2). In this example, we will summarize the west-east gradient, i.e., the "x"
dimension or raster columns, into a single value. That way, we will be able to visualize how NDVI changes acrosss the remaining spatial dimension "y"
, i.e., the north-south gradient, and over time.
First, let’s aggregate the "x"
dimension for specific points in time, to visualize the north-south NDVI gradient during two time points only. This can be done by applying the mean
function on all rows for particular layers, such as layers 1
and 7
:
x = st_apply(r[,,,1], "y", mean, na.rm = TRUE)[[1]] # Winter
y = st_apply(r[,,,7], "y", mean, na.rm = TRUE)[[1]] # Summer
The resulting vectors can be plotted as follows (Figure 11.14):
Now we are going to repeat the operation for all layers of r
, rather than two specific layers 1
and 7
. In other words, we will calculate the north-south gradient for all time points (layers) in the raster r
. We will create a raster s
, where each column will contain the row means of one layer of r
(Figure 11.15).
Raster s
is going to have:
- The same number of rows as
r
, i.e., 167 rows - As many columns as
r
layers, i.e., 233 columns
To create s
, we aggregate on dimensions "y"
and "time"
, so that we calculate the mean of each "y"
and "time"
combination, i.e., each row. Consequently, all values along "x"
are averaged:
The resulting stars
object s
has two dimensions, "y"
and "time"
, and its values are the average NDVI values for entire rows:
s
## stars object with 2 dimensions and 1 attribute
## attribute(s):
## NDVI
## Min. :-0.1011
## 1st Qu.: 0.1096
## Median : 0.1948
## Mean : 0.2299
## 3rd Qu.: 0.3214
## Max. : 0.7447
## NA's :733
## dimension(s):
## from to offset delta refsys point
## y 14 478 3704603 -926.305 +proj=utm +zone=36 +datum... NA
## time 1 233 NA NA Date NA
## values
## y NULL
## time 2000-02-01,...,2019-06-01
The arrangement of s
is very convenient in case we want to work with the data as a matrix
or as a data.frame
. For example, transforming s
to a data.frame
results in a table where the NDVI value in each y
and time
combination is in a separate row:
dat = as.data.frame(s)
head(dat)
## y time NDVI
## 1 3692561 2000-02-01 NaN
## 2 3691634 2000-02-01 NaN
## 3 3690708 2000-02-01 NaN
## 4 3689782 2000-02-01 0.1570333
## 5 3688855 2000-02-01 0.2565000
## 6 3687929 2000-02-01 0.3022000
However, the s
object does not have “spatial” x-y dimensions, which means that—striktly speaking—s
is not a spatial raster. Therefore, it can’t be simply displayed with plot
:
plot(s)
## Error in plot.stars(s): no raster, no features geometries: no default plot method set up yet!
In order to visualize s
, we can modify its metadata so that:
- The
"time"
and"y"
dimensions are specified in the same units, e.g., in an arbitrary system with a resolution of \(3\times1\), using theoffset
anddelta
parameters - The
"time"
and"y"
dimensions are identified as “spatial”[y]
and[x]
dimensions, respectively, using thexy
parameter
In the following code section, the first two expressions set the arbitrary coordinate system while the third expression identifies the dimensions as “spatial”:
s = st_set_dimensions(s, "time", offset = 0, delta = 3)
s = st_set_dimensions(s, "y", offset = 0, delta = -1)
s = st_set_dimensions(s, xy = c("time", "y"))
Now the s
object can be plotted (Figure 11.16):
plot(s, breaks = "equal", col = hcl.colors(11, "Spectral"), axes = TRUE, reset = FALSE)
contour(s, add = TRUE)
11.4 Processing trajectory data
11.4.1 The storms
dataset
As another example of how list
, split
and do.call
can be useful when processing spatio-temporal data, we will transform a table of point locations over time to a line layer of trajectories. Our input data for this example is a data.frame
object named storms
(package dplyr
):
library(dplyr)
storms = as.data.frame(storms)
vars = c("name", "year", "month", "day", "hour", "long", "lat")
storms = storms[, vars]
The storms
table contains recorded storm locations at consecutive points over time:
head(storms)
## name year month day hour long lat
## 1 Amy 1975 6 27 0 -79.0 27.5
## 2 Amy 1975 6 27 6 -79.0 28.5
## 3 Amy 1975 6 27 12 -79.0 29.5
## 4 Amy 1975 6 27 18 -79.0 30.5
## 5 Amy 1975 6 28 0 -78.8 31.5
## 6 Amy 1975 6 28 6 -78.7 32.4
For each storm record, we have the storm name (name
), time (year
, month
, day
, hour
) and location (long
, lat
). The majority of storm records are given in consecutive 6-hour intervals (0
, 6
, 12
, 18
).
11.4.2 Setting storm IDs
To distinguish between individual storm tracks we need to have a unique ID variable. Our first pick could be to use storm name (name
). However, storm name is not a good fit for an ID, because it is not unique. Many of the storm names are repeated for different storms in different years. For example, a storm named "Josephine"
appears in several different years between 1984 and 2008:
storms$year[storms$name == "Josephine"]
## [1] 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984
## [16] 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984
## [31] 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1984 1990 1990 1990 1990
## [46] 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
## [61] 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
## [76] 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
## [91] 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1996 1996
## [106] 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 2002 2002
## [121] 2002 2002 2002 2002 2002 2002 2008 2008 2008 2008 2008 2008 2008 2008 2008
## [136] 2008 2008 2008 2008 2008 2008 2008 2008
Consequently, we could choose to derive an ID that combines year (year
) and storm name (name
), so that each name/year combination is unique. However, a storm can be spread over two different years, e.g., if it starts in December and ends in January of the following year! For example, the storm named "Zeta"
starts in December 30^th 2005 and ends in January 6^th 2006:
head(storms[storms$name == "Zeta", ])
## name year month day hour long lat
## 7372 Zeta 2005 12 30 0 -35.6 23.9
## 7373 Zeta 2005 12 30 6 -36.1 24.2
## 7374 Zeta 2005 12 30 12 -36.6 24.7
## 7375 Zeta 2005 12 30 18 -37.0 25.2
## 7376 Zeta 2005 12 31 0 -37.3 25.6
## 7377 Zeta 2005 12 31 6 -37.6 25.7
tail(storms[storms$name == "Zeta", ])
## name year month day hour long lat
## 7397 Zeta 2006 1 5 6 -46.6 21.9
## 7398 Zeta 2006 1 5 12 -47.3 22.2
## 7399 Zeta 2006 1 5 18 -47.9 22.7
## 7400 Zeta 2006 1 6 0 -48.4 23.0
## 7401 Zeta 2006 1 6 6 -49.0 23.1
## 7402 Zeta 2006 1 6 12 -49.6 23.1
Using a name/year combination as an ID will wrongly split the storm in two parts: "Zeta 2005"
and "Zeta 2006"
.
What we really need is a unique ID for each consecutive sequence of storm names, assuming that no two consecutive storms will be given the same name. This type of IDs can be automatically generated using function rleid
(Run Length Encoding ID) from the data.table
package:
The storms
table now has a new column named id
, which contains a unique index for each storm:
head(storms)
## name year month day hour long lat id
## 1 Amy 1975 6 27 0 -79.0 27.5 1
## 2 Amy 1975 6 27 6 -79.0 28.5 1
## 3 Amy 1975 6 27 12 -79.0 29.5 1
## 4 Amy 1975 6 27 18 -79.0 30.5 1
## 5 Amy 1975 6 28 0 -78.8 31.5 1
## 6 Amy 1975 6 28 6 -78.7 32.4 1
For example, using the id
we can determine how many individual storms are there in the storms
table (knowing that rleid
produces IDs of consecutive numbers):
11.4.3 To points
Our next step to to convert the storms
table to a spatial point layer of the observed locations. The storms
table can be converted to a point layer with st_as_sf
, using the long
and lat
columns (Section 7.4):
The resulting object pnt
is an sf
point layer with 10010 points:
pnt
## Simple feature collection with 10010 features and 6 fields
## geometry type: POINT
## dimension: XY
## bbox: xmin: -109.3 ymin: 7.2 xmax: -6 ymax: 51.9
## geographic CRS: WGS 84
## First 10 features:
## name year month day hour id geometry
## 1 Amy 1975 6 27 0 1 POINT (-79 27.5)
## 2 Amy 1975 6 27 6 1 POINT (-79 28.5)
## 3 Amy 1975 6 27 12 1 POINT (-79 29.5)
## 4 Amy 1975 6 27 18 1 POINT (-79 30.5)
## 5 Amy 1975 6 28 0 1 POINT (-78.8 31.5)
## 6 Amy 1975 6 28 6 1 POINT (-78.7 32.4)
## 7 Amy 1975 6 28 12 1 POINT (-78 33.3)
## 8 Amy 1975 6 28 18 1 POINT (-77 34)
## 9 Amy 1975 6 29 0 1 POINT (-75.8 34.4)
## 10 Amy 1975 6 29 6 1 POINT (-74.8 34)
The point layer is shown in Figure 11.17:
11.4.4 Points to lines
To transform a point layer of object locations over time to a line layer of trajectories, we go through the following steps:
- Split the point layer to subsets of points for each storm
- Sort each group of points chronologically, earliest to latest
- Transform each of the point sequences to a line
- Combine the separate lines back to a single line layer
First, we split the point layer by storm ID (id
), using the split
function (Section 11.1.4). Remember that the sf
class is a special case of a data.frame
(Section 7.1.5), which is why split
works with sf
the same way as with a data.frame
:
We now have a list
of point sequences per storm. For example, the first list
element contains 30 points for the first storm Amy in 1975:
lines[[1]]
## Simple feature collection with 30 features and 6 fields
## geometry type: POINT
## dimension: XY
## bbox: xmin: -79 ymin: 27.5 xmax: -51.6 ymax: 44.5
## geographic CRS: WGS 84
## First 10 features:
## name year month day hour id geometry
## 1 Amy 1975 6 27 0 1 POINT (-79 27.5)
## 2 Amy 1975 6 27 6 1 POINT (-79 28.5)
## 3 Amy 1975 6 27 12 1 POINT (-79 29.5)
## 4 Amy 1975 6 27 18 1 POINT (-79 30.5)
## 5 Amy 1975 6 28 0 1 POINT (-78.8 31.5)
## 6 Amy 1975 6 28 6 1 POINT (-78.7 32.4)
## 7 Amy 1975 6 28 12 1 POINT (-78 33.3)
## 8 Amy 1975 6 28 18 1 POINT (-77 34)
## 9 Amy 1975 6 29 0 1 POINT (-75.8 34.4)
## 10 Amy 1975 6 29 6 1 POINT (-74.8 34)
Sorting the points, or making sure they are aready sorted, is essential to connect storm track points in chronological order. To sort the points we write a function that accepts a data.frame
(or an sf
) object and returns a sorted one based on the year
, month
, day
and hour
columns, in that order, using order
(Section 4.6.2). The function is then applied on each storm, separately, using lapply
(Section 11.1.3):
Now each list
element is a series of points in chronological order:
lines[[1]]
## Simple feature collection with 30 features and 6 fields
## geometry type: POINT
## dimension: XY
## bbox: xmin: -79 ymin: 27.5 xmax: -51.6 ymax: 44.5
## geographic CRS: WGS 84
## First 10 features:
## name year month day hour id geometry
## 1 Amy 1975 6 27 0 1 POINT (-79 27.5)
## 2 Amy 1975 6 27 6 1 POINT (-79 28.5)
## 3 Amy 1975 6 27 12 1 POINT (-79 29.5)
## 4 Amy 1975 6 27 18 1 POINT (-79 30.5)
## 5 Amy 1975 6 28 0 1 POINT (-78.8 31.5)
## 6 Amy 1975 6 28 6 1 POINT (-78.7 32.4)
## 7 Amy 1975 6 28 12 1 POINT (-78 33.3)
## 8 Amy 1975 6 28 18 1 POINT (-77 34)
## 9 Amy 1975 6 29 0 1 POINT (-75.8 34.4)
## 10 Amy 1975 6 29 6 1 POINT (-74.8 34)
The first sequence is shown on Figure 11.18. We can clearly see how the storm spans two different months and several different days (month
and day
panels).
11.4.5 Trajectory data
Our next step is to combine all POINT
geometries to a single MULTIPOINT
geometry. We use st_combine
to do that (Section 8.3.4.3):
Each lines
element is now a MULTIPOINT
geometry (sfc
):
lines[[1]]
## Geometry set for 1 feature
## geometry type: MULTIPOINT
## dimension: XY
## bbox: xmin: -79 ymin: 27.5 xmax: -51.6 ymax: 44.5
## geographic CRS: WGS 84
## MULTIPOINT ((-79 27.5), (-79 28.5), (-79 29.5),...
Why do you think all point attributes are lost as a result of applying
st_combine
?
The way the first list item looks when plotted is shown in Figure 11.19:
Next, each of the MULTIPOINT
geometries can be cast (Section 8.3.4.4) to LINESTRING
. Note that the additional fixed to
parameter is passed from lapply
to each of the st_cast
function calls:
Printing the first lines
element reveals that the geometry type was indeed changed from MULTIPOINT
to LINESTRING
:
lines[[1]]
## Geometry set for 1 feature
## geometry type: LINESTRING
## dimension: XY
## bbox: xmin: -79 ymin: 27.5 xmax: -51.6 ymax: 44.5
## geographic CRS: WGS 84
## LINESTRING (-79 27.5, -79 28.5, -79 29.5, -79 3...
Accordingly, plotting shows a line instead of points (Figure 11.20):
At this stage, we have a list
of 425 individual LINESTRING
geometries, one for each storm. The list can be combined back to an sfc
geometry column with do.call
(Section 11.1.5):
Unlike in the previous example (Section 11.3.2) where we had a list of four elements (season_means
), doing the above without do.call
is not a viable option as we would have to type 425 arguments:
Here is the combined sfc
:
geometry
## Geometry set for 425 features
## geometry type: LINESTRING
## dimension: XY
## bbox: xmin: -109.3 ymin: 7.2 xmax: -6 ymax: 51.9
## geographic CRS: WGS 84
## First 5 geometries:
## LINESTRING (-79 27.5, -79 28.5, -79 29.5, -79 3...
## LINESTRING (-69.8 22.4, -71.1 21.9, -72.5 21.6,...
## LINESTRING (-48.9 34.9, -49.1 35.2, -48.9 35.3,...
## LINESTRING (-72.8 26, -73 26.3, -73.4 26, -73.2...
## LINESTRING (-58 23, -58.1 23.7, -58.2 24.3, -58...
We now have a geometry column with one line per individual storm (Figure 11.21):
What if we want to get back the other attributes of each storm, such as its name? To do that, we first need to attach storm IDs back to the geometries. We can rely on the fact that list
names contain the original variable that was used for splitting the point layer, namely the storm IDs:
The line layer is now an sf
object with one attribute id
:
layer
## Simple feature collection with 425 features and 1 field
## geometry type: LINESTRING
## dimension: XY
## bbox: xmin: -109.3 ymin: 7.2 xmax: -6 ymax: 51.9
## geographic CRS: WGS 84
## First 10 features:
## id geometry
## 1 1 LINESTRING (-79 27.5, -79 2...
## 2 2 LINESTRING (-69.8 22.4, -71...
## 3 3 LINESTRING (-48.9 34.9, -49...
## 4 4 LINESTRING (-72.8 26, -73 2...
## 5 5 LINESTRING (-58 23, -58.1 2...
## 6 6 LINESTRING (-88.4 26.9, -88...
## 7 7 LINESTRING (-80 32.8, -79 3...
## 8 8 LINESTRING (-62.9 26.9, -64...
## 9 9 LINESTRING (-97 25.7, -97.4...
## 10 10 LINESTRING (-90.4 25.3, -91...
Plotting the layer shows the ID values per storm (Figure 11.22):
In case we need to, we can join other pieces of information from the original storms
table back to layer
, using aggregation (why?) followed by an ordinary join (Section 4.6) using the common column id
.
Now that each storm is represented by a line, we can calculate spatial properties of the trajectories. For example, line length reflects the overall distance that each storm has traveled. The line lengths can be calculated using the st_length
function (Section 8.3.2):
layer$length = st_length(layer)
layer
## Simple feature collection with 425 features and 2 fields
## geometry type: LINESTRING
## dimension: XY
## bbox: xmin: -109.3 ymin: 7.2 xmax: -6 ymax: 51.9
## geographic CRS: WGS 84
## First 10 features:
## id geometry length
## 1 1 LINESTRING (-79 27.5, -79 2... 3510012.0 [m]
## 2 2 LINESTRING (-69.8 22.4, -71... 3177598.3 [m]
## 3 3 LINESTRING (-48.9 34.9, -49... 1469864.8 [m]
## 4 4 LINESTRING (-72.8 26, -73 2... 2148308.5 [m]
## 5 5 LINESTRING (-58 23, -58.1 2... 3226682.2 [m]
## 6 6 LINESTRING (-88.4 26.9, -88... 1600143.2 [m]
## 7 7 LINESTRING (-80 32.8, -79 3... 2145905.6 [m]
## 8 8 LINESTRING (-62.9 26.9, -64... 2392209.7 [m]
## 9 9 LINESTRING (-97 25.7, -97.4... 455724.8 [m]
## 10 10 LINESTRING (-90.4 25.3, -91... 953824.1 [m]
Lengths can be transformed to \(km\) units for convenience:
library(units)
layer$length = set_units(layer$length, "km")
layer
## Simple feature collection with 425 features and 2 fields
## geometry type: LINESTRING
## dimension: XY
## bbox: xmin: -109.3 ymin: 7.2 xmax: -6 ymax: 51.9
## geographic CRS: WGS 84
## First 10 features:
## id geometry length
## 1 1 LINESTRING (-79 27.5, -79 2... 3510.0120 [km]
## 2 2 LINESTRING (-69.8 22.4, -71... 3177.5983 [km]
## 3 3 LINESTRING (-48.9 34.9, -49... 1469.8648 [km]
## 4 4 LINESTRING (-72.8 26, -73 2... 2148.3085 [km]
## 5 5 LINESTRING (-58 23, -58.1 2... 3226.6822 [km]
## 6 6 LINESTRING (-88.4 26.9, -88... 1600.1432 [km]
## 7 7 LINESTRING (-80 32.8, -79 3... 2145.9056 [km]
## 8 8 LINESTRING (-62.9 26.9, -64... 2392.2097 [km]
## 9 9 LINESTRING (-97 25.7, -97.4... 455.7248 [km]
## 10 10 LINESTRING (-90.4 25.3, -91... 953.8241 [km]
The result can be visualized using mapview
as follows:
Appel, Marius, and Edzer Pebesma. “On-Demand Processing of Data Cubes from Satellite Image Collections with the gdalcubes Library.” Data 4, no. 3 (2019): 92.↩
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2012.01359.x/abstract↩
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004993↩